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ABSTRACT 

Using techniques of Gitik in conjunction with a large cardinal hypothesis 

whose consistency strength is strictly in between that of a supercompact 

and an almost huge cardinal, we obtain the relative consistency of the 

theory "ZF + -~AC~ + i¢ > w is measurable  iff ~ is the  successor of  a 

s ingular  cardinal".  

It is well known that when the Axiom of Choice (AC) becomes false, the structure 

of the set theoretic universe can be radically altered. As an example, R1 can be 

singular ILl. Indeed, all uncountable successor and limit cardinals can be singular 

[G1], or in fact, any desired uncountable successor cardinal, along with all limit 

cardinals, can be singular [G2]. 

The bizarre behavior of the set theoretic universe in the absence of AC ex- 

tends to large cardinals as well. Large cardinals such as Ramsey and measurable 

cardinals can be successor instead of limit cardinals [J1], [W], [A3], [A4], [Ab], 

[AH]. It is even possible to have non-vacuously the consistency of the theory 

" Z F  + --,AC,,, + ~ > w is regular iff ~ is measurable" [All. 

The purpose of this paper is to show that yet more unusual possibilities for 

the structure of the class of measurable cardinals without the Axiom of Choice 

can occur. It was shown in [A4], [Ab], and [AH] that it is possible to force and 

obtain a model in which the successor of a singular cardinal is measurable. (See 

[K] for a discussion of this result in the context of the Axiom of Determinacy 

(AD).) We generalize this result in the spirit of [A1] to show the consistency of 
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the theory " Z F  + -~AC~ + s > w is measurable iff s is the successor of a singular 

cardinal" relative to a certain large cardinal assumption. Specifically, we prove 

the following 

THEOREM: Let V ~ " Z F C +  There is a cardinM so so that: 

1. s0 is superstrong via j ,  i.e., there is a j: V ~ M with crit(j) = s0 so that 

Vi(, ,  ) C_ M.  

2. s0 is < j (s0)  supercompact, i.e., for all a < so, So is a supercompact. 

3. The inner model M is so that V1(~+1 ) C M,  where s~ is the least cardinal 

> so which is < j ( so)  supercompact". 

Let, in addition, A, B C_ so, A, B E V satisfy the following properties: 

a. A N B = O a n d A U B = s o .  

b. I f  A < so is a limit ordinal, then A E A. 

e. I f v E A ,  t h e n v + l , v + 2 E B .  

There is then a sequence (av : v < So) and a model NA of height So for the 

theory " Z F  + - ,AC~+ The cardinal 7 is singular iff 7 = av for some v E A + 

For aU v E A, 7 + = a + is measurable and carries a normal measure + I f 7  is not 

the successor of a singular cardinal, then 7 isn't measurable". 

Note that  the conditions on A and B imply that B is composed entirely of 

successor ordinals < s0 and that the final model NA will satisfy "s  is measur- 

able iff s is the successor of a singular cardinal". Since NA ~ -~ACw, i.e., since 

NA ~ DC, the fact that each measurable cardinal carries a normal measure is 

significant. Note further that  if s is an almost huge cardinal, i.e., if there is a 

j :  V --* M with crit(j) = s so that M <j(~) C_ M, then s possesses properties 

(1)-(3) above, and as shown in [A2], i¢ has a normal measure concentrating on 

cardinals satisfying properties (1)-(3) above. Thus, the s0 used in the construc- 

tion of the model NA is strictly weaker in consistency strength than an almost 

huge cardinal (and since s~ > ~:0 is inaccessible, is strictly stronger in consistency 

strength than a supercompact cardinal). 

Turning now to our proof, the proof of the Theorem uses Gitik's techniques 

of [G2] (see also [hl], [A2], and [Aa]) to construct NA. To begin, if V satisfies 

the hypotheses of the Theorem, let A, B, s0, and j :  V --* M be as in these 

hypotheses. The first step in the proof is to define a Radin sequence of measures 

/~<~+ = (/~a: a < s +) of length s + over P~o(s~). Specifically, if a = 0,/~a is 

defined by X E /~a if[ (j(/~): fl < s~) E j ( X ) ,  and if a > 0, /~a is defined by 
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X E ~ if[ (fiB: ~ < or) ~df ft<~ E j ( X ) .  As in [A2], properties (1) and (3) above 

ensure that this definition makes sense. 

Next, using ~t<,~+, we let R<,,+ be supercompact Radin forcing defined over 

V~o x P~o(n~). The particulars of the definition can be found in [G2] and [A3]; 

however, in the interest of completeness and clarity, we repeat the definition here. 

R<~0+ is composed of all finite sequences of the form 

((p0, u0, Co, ) , . . . ,  (p,, ~, ,  c , ) ,  ( ~<4 ,  c>) 

satisfying the following properties: 

1. For 0 < i < j < n, Pi C pj,  where for p,q E P,o(n;) ,  p C q means p C q 

and ~ < q Cl n. (~ is the order type of p.) 

2. For 0 < i < n, pi f3 t~o is a < n0 supercompact cardinal. 

3. N is the least cardinal > pi ¢3 n0 which is a < n0 supercompact cardinal. 

In analogy to our earlier notation and the notation of [G2], we write ~ = 

(p~ n n0)*. 
4. For 0 < i < n, ui is a Radin sequence of measures over Vp,n~0 x Pp,n.o(P-/) 

where (Ui)o, the 0 th coordinate of ui, is a supercompact measure over 

P,,n,o(~). 
5. Ci is a sequence of measure 1 sets for ui. 

6. C is a sequence of measure 1 sets for p<,+.  

7. For each p E (C)0, where (C)0 is the coordinate of C so that (C)0 E P0, 

Ui=0p, C p. 

8. For each p E (C) 0, ff = (p N ~0)* and prqt¢0 is a < n0 supercompact cardinal. 

Properties (4), (5), and (6) are all standard properties of Radin forcing. Prop- 

erties (1), (2), (3), (7), and (8) all follow since properties (1)-(3) of to0 of the 

hypotheses of the Theorem imply M ~ "no is < j(n0) supercompact and n~ 

is the least cardinal > n0 which is < j(n0) supercompact", so by reflection, 

{p E P~o(n~): p n no is a < no supercompact cardinal and ~ is the least < no 

supercompact cardinal > p n n0 } E P0. 

We recall now the definition of the ordering on R<~+. If 

~0 = ((po,,,0, c0) , . . . ,  (p, , , , , ,  c , ) ,  ( t ,<4,  c))  and 

~rl = ((qo, vo, Do),..., (q,,,, Vm, Dra), (p,+, D)), 

then 7rl extends 7r0 iff the following conditions hold: 
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1. For each (pj, u j, Uj) which appears in ~ro there is a (qi, vi, Di) which appears 

in *rl so that  (qi,vi) = (pj,uj) and Di C_ Cj, i.e., for each coordinate (Di)a 

and (C~)~, (D,)~ c_ (C~)~. 

2. DCC_C. 

3. n < m .  

4. If (qi,vi,Di) does not appear in Ir0, let (pj ,u j ,Cj)  (or (p< ,+ ,C) )  be the 

first element of lr0 so that pj N no > qi N no. Then 

a) qi is order isomorphic to some q E (Cj) 0. 

b) There exists an a < a0, where a0 is the length of uj, so that  vi is 

isomorphic "in a natural way" to an ultrafUter sequence v E (Cj)~. 

c) For/~0 the length of vi, there is a function f :  /30 ~ a0 so that for 

/~ < fie, (Di)~ is a set of ultrafilter sequences so that for some subset 

(Di)#'  of (Cj)I(#) , each ultrafilter sequence in (Di)p is isomorphic "in 

a natural way" to an ultrafilter sequence in (Di)~'. 

For further information on the definition of the ordering on R<~+ (including 

the meaning of "in a natural way"), readers are referred to [A3] and [FW]. 

Before giving the definition of the partial ordering used in the construction 

of the model for our Theorem, we recall the definition of two key partial orderings. 

If c~ < fl are regular cardinals, then Col(a, </3) is just the usual Ldvy collapse 

of all cardinals in the interval (a,  ~) to a,  i.e., Col(a, </~) = {f: a ×/3 ---} a :  f 

is a function so that Idom(f)l < a and f((7,  a)) < ~} ordered by inclusion. For 

e (a,/~) a regular cardinal, f e Col(a,< /~), f la  = {((7,6),p) e f: 6 < a}.  

If G is V-generic over Col(a, < D), then G[~r = {fief: f E G} is V-generic over 

(fl~: f e Col(s, </~)} -- Col(a, </~)1~ = Col(a, < ~). 

If a is/~ supercompact, then let H be a normal measure over P~,(~) satis- 

fying the Mends partit ion property [M]. (Such an ultrafilter will always exist if a 

is 2 a supercompact, a restriction which will cause no problems since we will be 

working with cardinals a < /~  < t¢0, so a can be chosen to be < to0 supercom- 

pact.) Supercompact Prikry forcing SC(a,  fl) is then defined as all sequences of 

the form (P0,. . .  ,p,,, C) so that: 

1. n E o J a n d C E H .  

2. For 0 < i < n, pi E P,~(~). 

3. F o r O < i < j < n ,  p i C p j .  

4. For each q E C, p,, C q. 

For rl  = (po,...  , p , ,C )  and 7r2 = (qo,... ,qm,D), ~r2 extends ~rl iff: 
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1. ft  < rrt. 

2. For 0 < i < n, Pi = ql. 
3. F o r n + l  < i < m ,  q i • C .  

4. D C C .  

We now define a partial ordering P' by 

P '  = R<,0+ x ] 1  
{(ot,fl}: a < ~ < ~ 0  ~re regular cardinals} 

Col(a, < #) 

x I-[ sc(a, ) 
{{cr,fl): a < ~ < ~ o  is so that  fl is • regul&r cardinal and cr is <~o supercompact )  

ordered componentwise, and let P be the subordering of P '  consisting of all 

conditions of finite support,  also ordered componentwise. Let G be V-generic 

over P.  The model NA for A as in the statement of the Theorem will be a 

submodel of V[G] similar to the models NA of [G21 and [A3I. We describe this 

model in more detail below. 

Let Go be the projection of G onto R<~0+. For any condition 

r = ((p0, u0, c o ) , . . . ,  (p,, u , ,  c , ) ,  (~<~o +, c ) )  e R<~o+ 

or any condition r = (Po,... ,p,,,C) e SC(a, fl) call (p0, . . .  ,p,,) the p-part of 

r .  Let R = {p: 3 r  E G0[p e p-part(r)]} and let Ri = {p: p • R and p is a 

limit point of R}. We define three sets E0, El ,  and E2 by E0 = {a: For some 

r • Go and some p •p -pa r t ( r ) ,  p N to0 = a},  E1 = {a: a is a limit point of 

E0}, and E2 = E1 U{w}U{/~:  9a  • El[fl = a*]}. Let (av: t~ < ~0) be the 

continuous increasing enumeration of E2, and let t, = t / +  n for some n • w. For 

fl where/~ • [av,a~+l)  in the first four cases, ~ • [a+,a~+~) in the fifth case, 

and ~ = a,,+~ in the last two cases, sets Ci(a~,~) and Ci(a+,/3) are defined 

according to specific conditions on t, and t~' in the following manner: 

1. u' = t~ # 0 a n d n  = 0. Let then p(a~) be the dement  p of R so that 

p ¢3 ~0 = a~, and let hp(~) : p(a~) ~ p(a~) be the order isomorphism 

between p ( a , )  and p(av). Cx(a , ,~ )  = {h~,(a.)"p n fl: p • RI, p C p(av),  

and h;(~.~(~) • p}. 
2. v' 4 g and n = 2k. Let C2(av, fl) = {hp(,~,)"p N fl: p • R, and if (g' ¢ 0) 

or (v' = 0 and k > 1), then p(a~,+2(k-1)) C p _C p(a~)}. 

3. v' # v and n = 2k + 1. Let G(a~,,a,,+l) be the projection of G onto 

SC(a,,,a,,+l). C3(a , ,~ )  = {pN B: Br • G(a,,,a,,+i)[p •p-par t ( r ) ]} .  



372 A. APTER Isr. J. Math. 

4. n # 0 or u' = n = 0. Let H ( a ~ , a ~ + l )  be the projection of G onto 

Col(a., < ~.+~). C4(~.,D) = H(~..a.+~)ID. 

5. n # 0. Let H(a+,a.+~) be the projection of G onto Col(a+,< a.+,). 

#) = 

6. n ~ 0 or u' ---- n = O. With H(er.,a.+l) having the same meaning as in (4) 

above, = 

7. n # 0. With H(a~, a.+,) having the same meaning as in (5) above, 

6 7 ( ~ ,  olu-t-i ) = H(o l~ ,  {3~t,.t.1). 

We can now give a description of the model NA witnessing the conclusions 

of our Theorem. Intuitively, NA is V~ 0 of the least model of Z F  extending V 

which contains, for fl as above, Gl(a , , /3)  if v is a limit ordinal, C2(a, , /~) if 

v = v ' + 2 k a n d v E A ,  C3(a,,,fl) i f v =  v ' + 2 k + l  a n d r E A ,  C4(a , , f l )  if 

v E B, v + 1 E A, and for v - 1 the immediate predecessor of v (which exists 

since B is composed entirely of successor ordinals), v - 1 E B U {0}, Cs(a +, fl) 

if v E B, v + 1 E A, and v -  1 E A, C~(a,.,a,,+~) if v -  1, v ,v  + 1 E B U {0}, 

and C7(a +, a , + l )  if v, v + 1 E B and v - 1 E A. The C~ have been chosen so as 

to ensure that  successors of singular cardinals are measurable and successors of 

regular cardinals are non-measurable. 

To define NA more precisely, it is necessary to define canonical names a___e.~ 

for the a , ' s  and canonical names Ci(u,~) and C i ( u , u +  1) for the seven sets 

just described. Recall that  it is possible to decide p ( a , )  (and hence p ( a , ) )  by 

w r i t i n g w . u = w  ~ ° . n 0 + w  ~ l . n l + - . - + w  a '~ -nm (wherea0 > a l  > - - - > a m  

are ordinals, n o , . . . ,  nm > 0 are integers, and + , . ,  and exponentiation are as 

in ordinal arithmetic),  letting 7r = {(pij,, uij,, Cijl)i<_m,l<ji<_ni, (P<t¢0-1", C) )  be so 

that  min(pil N ~0, (.dlength(uil)) = ai and length(uijl ) = min(pil n to0, length(uil))  

for 1 < j i  < hi, and letting p(tr~) be Pro,... Further, D~ = {r • P:  rlR<~+ 

extends a condition Ir of the above form} is a dense open subset of P.  t~_...~ is the 

name of the av  determined by any element of Dv O G; in the notation of [G2], 

a...e_v = {{r,~u(r)): r • D ,} ,  where av( r )  is the a ,  determined by the condition r. 

The canonical names Ci(v, ~) and C~(z/, u + 1) are defined in a manner  so 

as to be invariant under the appropriate group of automorphisms. Specifically, 

there are seven cases to consider. We again write ts = t , l+n and let g be as before. 

We also assume without loss of generality that  as in [G2], au+l  is determined by 

D , .  Further, we adopt throughout each of the seven cases the notation of [G2]. 
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,,' # ,, # 0 a n d .  = o. c , ( , , , f l )  = { ( , - , (÷ IR<4) I ( ,~ . (~ ) ,Z ) ) :  r • D . } ,  
where for r • P ,  lr = 

fiR<,+ , ~l(a,(r),/~) = {h,(,.)(,)"p n fl: p •p-part(~r), p C_ p(a,)(r), p • 

Rd~r, and h~-(1 )(~)(fl) • p. 

2. v • A, v r # v, and n = 2k. Note tha t  as in [G2] we can assume without  

loss of generali ty tha t  for any r E D , ,  r determines a , ,+z(k-1) .  Cz(v, fl) = 

{ ( ~ , f f l n < 4 ) l ( ~ . f f ) ,  #)): ~ • D,}, where this time for r • P, 7r = fiR<,+, 
~rl(av(r), fl) = {hp(a.)(r)"p Iq fl: p •p-part(Tr), p • R[~, p(av,+2(k_,) ) ( r )  C 

--1 p C p(av)(r), and hp(a.)(r)(fl ) • p}. 
3. v • A, u ~ # v, and n = 2k + l. 

Cs(v, fl) = {(r ,  f f lSC(a . ( r ) ,  a .+a( r ) ) ) l (a . ( r ) ,  fl)>: r • D . } ,  

where for r E P ,  7r = ~ l S C ( ~ . f f ) , ~ . + , f f ) ) ,  =l(~.(~) , f l )  = { p n  fl: p •p -  

part(~r)}. 

4. v-l•BU{O},v•B, andv+l•A. 

c,(v,~) = {<r,(÷ICol(~.(r),~.+1(r)))l~): r • o.}. 

5. v • B, v-1, v+l • A. Cs(v, fl) = {(~,fflCo1(=+(0,=.+,ff)))l~): r • o,}. 

6. v - 1,v,v + 1 • B u {0}. Cs(v,v + 1) = {(~,(elCo1(~.(~),~.+,ff)))): r • 

O.}. 

7. v , v + l  • B and v - 1  • A. Cz(v,v + 1) = { ( r , ( F l C o l ( a + ( r ) , a v + , ( r ) ) ) ) :  r • 

O.}. 

As in [G2], since for any r,r' • D.  n G, p(~.)(r) = p(~.)(r'), each of the 
definitions above is unambiguous.  

Let ~ be the group of automorphisms of [G2], and let 

5 

C(G) = U {~(c,(v, ~ ) ) : .  • a, 0 < ~ < ~0, 
i = 1  

7 and fl • [v, s o ) i s  a cardinM} U Ui=~{Ir(Ci(v,v + l)): ~r • ~ and 0 < v < 

s0}. C(G) = U~=l{iGOr(Ci(v, fl))): ~r • ~, 0 < v < s0, and fl • [v,~0) is a 
7 • 

cardinal} U Ui=6{zG(~r(Ci(v, v + 1))): lr • g and 0 < v < .o }  = iG(C(G)). NA 

is then  the set of all sets of rank < ~0 of the model  consisting of all sets which 

are heredi tar i ly  V definable f rom C(G), i.e., NA = V~ VD(c(G)). 

The  arguments  of [G2] show tha t  NA ~ Z F  + ~AC~,. In addit ion,  we 

know tha t  for any ordinal 7 and any set x _C 7, z • NA, x = {a < 7: V[G] 
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~o(ot, io(Tra (Cit (ua, fa ) ) ) , .  • •, io(Tr,(Ci. (vn, fin))), C(G))},  where ij is an integer, 

1 _< j ___ n, 1 _< ij < 7, each ~ri • ~, each f i  is an appropriate ordinal for ij, 

and ~o(xo,... ,xn+l) is a formula which may also contain some parameters  from 

V which we shall suppress. 

Let 

I I  f,) x H Col( +,fj) 
{ij: ij e{4,e},j<,} {ii: i~ e{5,7},j<,} 

x I - [  x R < . +  ° . 
{i~: i j  =3 j < r , }  

For ~r • R<,_o+ and 7 an arbitrary ordinal, let ~r]7 = { (q ,u ,C)  • ~r: q n  t~0 _< 7}, 

and for p • P ,  p = (px, . . .  ,p , , ,  ~r), m < n, r • R<~+, let PIT = ( q l , . . . ,  q,,, 7r17), 

where qj = pj if either avj or a + is < 7 and qj = $ otherwise. In other words, v i - 
P]7 is the par t  of p below or at 7. Without  loss of generality, we ignore the empty  

coordinates and let P]7  = {P]7: P • P} .  Let G[7 be the projection of G onto 

PIT- An analogous fact to Theorem 3.2.11 of [G2] holds, using the same proof  as 

in [G2], namely for any x _C 7, x • V[G]7]. In addition, the elements of PIT can 

be part i t ioned into equivalence classes (the "almost similar" equivalence classes 

of [G2]) with respect to C i , ( v l , f l ) , . . .  , C i . ( v a , f , )  so that  if a < 7, r is a t e rm 

for x, and p IF a • r ,  for any q in the same equivalence class as p, q II- a • r .  

Further, if v E A, then the arguments of [G2] show that  for 7 = av+l  there are 

< a~+x such equivalence classes. It is this last fact, in tandem with the way in 

which NA was defined, that  allows us to show that  NA is our desired model. 

LEMMA 1: NA ~ "7 Js a singular cardinal" iff 7 = a~ for some u • A. 

Proof  of Lemma 1: In order to prove this lemma, we must  first ascertain the 

nature of the cardinal structure of NA. Specifically, we show that  all (well- 

ordered) cardinals of NA are either an a~ or an (a+)  y if u = a + 1 and a • A. 

Thus,  we begin by showing that  any 3' for 3' = av or 3" = (a+) v if g = a + 1 and 

a • A remains a cardinal in NA. 

Let 3' be as just stated. If x C_ 3", x • NA, then as mentioned before, 

z • V[G[3'] where G]3' is V-generic over P]3' for P]3', G]3' as previously described. 

Thus,  it suffices to show that  7 remains a cardinal in V[G]3']. To see this, observe 

that  we can write P]3' as Q0 x Q1, where Q0 is a partial  ordering (possibly trivial) 

defined over 3' and some ordinal fl > 7, and Q1 is the rest of P]3'. Since by the 
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definition of NA, Qo will be either trivial (if 3' = ~ and v - 1 E A), a partial 

ordering of the form Col(7, < ~), a partial ordering of the form SC(7, ~), or a 

supercompact Radin forcing defined over PT(~) isomorphic to a partial ordering 

of the form SC(7, ~), forcing with Q0 will preserve the fact that  7 is a cardinal 

and preserve the same bounded subsets of 7 as in V. Working now in V Q°, we 

can factor Q1 as Q2 × Qa, where Q2 is a partial ordering defined over ordinals 

3" < ~' -< 7 and Q3 is the rest of Q1. The fact that PI3' is a finite product allows 

us to assume that 3" and ~' are the maximum such ordinals. Further, the fact 

that V and V Q° have the same bounded subsets of 7 ensures that Q2 can be 

partit ioned into < 7 almost similar equivalence classes in both V and V q* unless 

Q2 is of the form Col(3, ~, < 3'). In this case, the definition of NA ensures that  

VQ° ~ "3' is a regular cardinal", so forcing over V Q° with Q2 preserves the fact 

that 3, is a regular cardinal; further, V Q°×Q2 ~ "Q3 can be partit ioned into < 3, 

almost similar equivalence classes". Thus, in either case, since GI3 , is V-generic 

over PI3, = Q0 x Q1 = Q0 x Q2 x Q3, V[GI3,] ~ "3' is a cardinal". 

Let now (/3~: v < n0) be the continuous increasing enumeration of {ot~: v < 
+ v ~¢0}O{(c~) : v = a + l  a n d a  E A}. As in [G2], by the fact that the def- 

inition of NA ensures that NA contains collapse maps for each V cardinal in 

the interval (/~,/5~+1) where v < n0 is arbitrary, it is inductively the case that 

NA ~ "Vv[fl~ _< R~]". Since each/iv is a cardinal in NA, NA ~ "Vv[/~ = Rv]". 

Thus, the/3~'s and the cardinals of NA coincide. 

If 3' = ~ for some v E A, then since the definition of NA ensures that NA 
contains a cofinal w sequence for c~, NA ~ "c~ is a singular cardinal". If 3, ~ c~ 

for some v E A and NA ~ "7 is a cardinal", then by the preceding paragraph, 

e i t h e r 7  = a~ for v E B or3,  = (~+)v  for v = a + l  a n d a  E A. No matter  

which of these were true, if x E NA coded a sequence witnessing the singularity 

of 3', then x E V[G[3,] for G[3, as earlier. When factoring P[3, into Q0 × Q1, since 

this case ensures Q0 must be a L$vy collapse, V Q° ~ "3" is regular". Further, 

when factoring Q1 into Q2 x Q3, since our earlier discussion shows either Q2 is 

of the form Co1(3,' , < 3") or is so that V q~ ~ "Q2 can be partit ioned into < 3' 

almost similar equivalence classes", V Q° ×Q2 ~ "3' is regular". Therefore, since 

VQ0 x02 ~ "Q3 can be partitioned into < 7 almost similar equivalence classes" 

and GI3, is V-generic over Q0 x Q2 × Q3, V[GI3,] ~ "3' is regular". Thus, x cannot 

code a sequence witnessing the singularity of 3'. This proves Lemma 1. I 

LEMMA 2: If NA ~ "3' is the successor of a singular cardinal", then NA ~ "3' is 
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measurabJe via some normaJ measure". 

Proof of Lemma 2: By Lemma 1, for any 7 as in the hypotheses, NA ~ "7 ---- -~'+" 

where v E A. Further, the definition of NA ensures that 7 = o~v+l. 

Fix p E V a normal measure over 7. In NA, define p* -- {y C 7: Y 

contains a p measure 1 set}. We show NA ~ "p* is a normal measure over 7". If 

x C 7, x E NA, then x E V[GIT] for GI7 V-generic over PIT, PIT, G]7 as before. 

Further, as mentioned in the sentences immediately preceding the statement of 

Lemma 1, the elements of PIT can be partitioned into < av+l many almost 

similar equivalence classes so that if p and q are in the same equivalence class, 

I" is a term for x, and p decides "a E r " ,  then q decides "a E ~'" in the same 

way. Thus, as in the proof of Lemma 1.3 of [A3], in V[GIT], the L~vy-Solovay 

arguments [LS] show p' = (y C_ 7: Y contains a p measure 1 set) is a normal 

measure over 7. In particular, since x E V[GI7 ], either x or 7 - x will contain 

a p measure 1 set. Further, if NA ~ "(x#: ~ < ~ < 7) is a sequence of p* 

measure 1 sets", then since (x#: ~ < ~ < 7) can be coded by a single z C 7, 

for the appropriate PIT and GI7 , both x and (x#: ~ < g < 7) are elements of 

V[GI7 ]. Thus, V[GI7 ] ~ " Na<s za E p '" ,  so NA ~ "n~<6 xa E p*". Finally, 

if NA ~ "f :  7 ~ 7 is a regressive function", then since f can be coded by a set 

of ordinals, f E V[GI7] for the appropriate PIT and GI7. Thus, V[GI7 ] ~ " f  is 

constant on a p r  measure 1 set", so NA ~ " f  is constant on a p* measure 1 set". 

This proves Lemma 2. I 

LEMMA 3: ~f NA ~ "'f is not the successor o / a  singular cardinal", then NA ~ "7 

is not measurable". 

Proof of Lemma 3: By Lemma 1, for any 7 as in the hypotheses, either 7 -- 

(a+)  v for u = a + l  a n d a  E A o r T = a v  for s o m e v G  B s o t h a t  u - 1  E B. 
_- + v If 7 ( a v )  , then since V ~ AC, V contains a sequence of length (~+)v  of 

subsets of ¢xv. Since V C_. NA, this sequence is present in NA also. It is well 

known (see [J2], Lemma 27.2, p. 298) that if such a sequence exists, regardless 

of whether AC is true, 7 can't be measurable. 

If 7 = ~v for some v E B so that v -  1 E B, then by the construction of NA, 

NA contains a set of the form C6(a, - , ,a , )  or a set of the form CT(a+_ , ,a , ) .  

Since c_ NA or C_ NA, in either case, there 
will be present in NA a sequence of subsets of some smaller cardinal of length 

~v. As in the last paragraph, the presence of such a sequence contradicts the 
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measurability of 7. This proves Lemma 3. | 

The above three lemmas complete the proof of our Theorem. | 

Let us observe that the current state of forcing technology requires that  if 

NA ~ "c~ is measurable", then NA ~ "a v + is regular" (and of course, by our 

requirements, is non-measurable). If we wanted to have NA ~ "a~ is measurable 

and a + is singular", then there would have to be some way to collapse a singular 

cardinal to be the successor of a measurable cardinal n while preserving the 

measurability of n. Unless n is to become R1 (see [A1]), it is unknown how 

to do this. It is for this reason we require that NA contains sets of the form 

Cs(a +, 3) and CT(a +, a~+~), since their presence provides enough of a "gap" 

to ensure that a,, remains measurable in NA. More specifically, their presence 

ensures that  in the analogue to Theorem 3.2.11 of [G2], since the Q0 of Lemma 1 

is trivial, the partial ordering Pin,, can be partitioned into < a ,  almost similar 

equivalence classes, the V-measurable cardinal which becomes a , _  1 +  in NA. This, 

as just shown, allows a~ to remain measurable in NA while preserving (a+) v as 
a regular cardinal. 

In conclusion, we remark that from a weaker hypothesis than that  assumed 

for our Theorem, i.e., from a cardinal n0 so that n0 is 2 x supercompact for )~ > n0 

measurable, it is possible to construct a model for the theory "ZF+",AC,~+n > w 
is measurable iff n is the successor of a singular cardinal". In this model, all 

limit cardinals will be singular and all successor cardinals will be regular, so the 

only measurable cardinals will be successors of limit cardinals. Thus, there is 

somewhat less flexibility as to what cardinals can be singular. An outline of the 

proof is as follows: If j :  V ~ M witnesses that n0 is 2 x supercompact for $ > no 

measurable, let n~ in this case be the least measurable > n0, and let R<~o+ as 

before be supercompact Radin forcing over P~0(n;) defined using j .  (The fact 

that I¢0 is 2 x supercompact ensures this definition can be given.) Let 

P '  = R<~+ × H Col(a, </~),  
{(ct,fl}: ct<~<t¢0 are regular cardinals} 

and let P be the subordering consisting of all conditions of finite support. For 

{a~: t, < n0) as before, let NA be Vs 0 of the least model of ZF extending V 

which contains the appropriate analogues of the sets Cl(a~,,/3) if u < n0 is a 

limit ordinal and/3  E [a~,av+l),  CT(a+,a,,+~) if t, is the successor of a limit 

ordinal, and C6(a,,,a,,+l) if u is neither a limit ordinal nor the successor of a 
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limit ordinal. 2XrA can then be shown to be our desired model. Further, as the 

referee has pointed out, the methods of this paper  can be used to construct, from 

the hypotheses of this paragraph,  a model for the theory " Z F  + "-,AC,,, + For 

every ordinal a ,  either Ra or R~+I is measurable", i.e., a model in which every 

second cardinal is measurable. 
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